High Order Algorithms for the Fractional Substantial Diffusion Equation with Truncated Lévy Flights

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A second-order difference scheme for the time fractional substantial diffusion equation

In this work, a second-order approximation of the fractional substantial derivative is presented by considering a modified shifted substantial Grünwald formula and its asymptotic expansion. Moreover, the proposed approximation is applied to a fractional diffusion equation with fractional substantial derivative in time. With the use of the fourth-order compact scheme in space, we give a fully di...

متن کامل

Application of high-order spectral method for the time fractional mobile/immobile equation

In this paper, a numerical efficient method is proposed for the solution of time fractional mobile/immobile equation. The fractional derivative of equation is described in the Caputo sense. The proposed method is based on a finite difference scheme in time and Legendre spectral method in space. In this approach the time fractional derivative of mentioned equation is approximated by a scheme of ord...

متن کامل

The spectral iterative method for Solving Fractional-Order Logistic ‎Equation

In this paper, a new spectral-iterative method is employed to give approximate solutions of fractional logistic differential equation. This approach is based on combination of two different methods, i.e. the iterative method cite{35} and the spectral method. The method reduces the differential equation to systems of linear algebraic equations and then the resulting systems are solved by a numer...

متن کامل

Numerical techniques for the variable order time fractional diffusion equation

(2012) Numerical techniques for the variable order time fractional diffusion equation. NOTICE: this is the author's version of a work that was accepted for publication in Applied Mathematics and Computation. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. ...

متن کامل

Crime Modeling with Lévy Flights

The UCLA burglary hotspot model, introduced in [M. B. Short, M. R. D’Orsogna, V. B. Pasour, G. E. Tita, P. J. Brantingham, A. L. Bertozzi, and L. B. Chayes, Math. Models Methods Appl. Sci., 18 (2008), pp. 1249–1267], models the formation of hotspots of criminal activity. In this paper, we extend the UCLA model to incorporate a more realistic model of human locomotion. The movement of the crimin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SIAM Journal on Scientific Computing

سال: 2015

ISSN: 1064-8275,1095-7197

DOI: 10.1137/14097207x